29 research outputs found

    Maximal entanglement of squeezed vacuum states via swapping with number-phase measurement

    Get PDF
    We propose a method to refine entanglement via swapping from a pair of squeezed vacuum states by performing the Bell measurement of number sum and phase difference. The resultant states are maximally entangled by adjusting the two squeezing parameters to the same value. We then describe the teleportation of number states by using the entangled states prepared in this way.Comment: 4 pages, 1 PS figure, RevTe

    Teleportation-based number state manipulation with number sum measurement

    Get PDF
    We examine various manipulations of photon number states which can be implemented by teleportation technique with number sum measurement. The preparations of the Einstein-Podolsky-Rosen resources as well as the number sum measurement resulting in projection to certain Bell state may be done conditionally with linear optical elements, i.e., beam splitters, phase shifters and zero-one-photon detectors. Squeezed vacuum states are used as primary entanglement resource, while single-photon sources are not required.Comment: 9 pages, 4 figures, Misprints are corrected. 3 figures for number sum measurement are added. Discussion on manipulations are expanded. Calculations for success probabilities are added. Fig.4 is adde

    Efficient Quantum Computation using Coherent States

    Get PDF
    Universal quantum computation using optical coherent states is studied. A teleportation scheme for a coherent-state qubit is developed and applied to gate operations. This scheme is shown to be robust to detection inefficiency.Comment: 6 pages, 5 figures, extended and modified (in print, PRA

    Teleportation improvement by conditional measurements on the two-mode squeezed vacuum

    Get PDF
    We show that by making conditional measurements on the Einstein-Podolsky-Rosen (EPR) squeezed vacuum [T. Opatrny, G. Kurizki, and D.-G. Welsch, Phys. Rev. A 61, 032302 (2000)], one can improve the efficacy of teleportation for both the position-difference, momentum-sum, and number-difference, phase-sum continuous variable teleportation protocols. We investigate the relative abilities of the standard and conditional EPR states, and show that by conditioning we can improve the fidelity of teleportation of coherent states from below to above the (F) over bar =2/3 boundary, thereby achieving unambiguously quantum teleportation

    On quantum teleportation with beam-splitter-generated entanglement

    Get PDF
    Following the lead of Cochrane, Milburn, and Munro [Phys. Rev. A {\bf 62}, 062307 (2000)], we investigate theoretically quantum teleportation by means of the number-sum and phase-difference variables. We study Fock-state entanglement generated by a beam splitter and show that two-mode Fock-state inputs can be entangled by a beam splitter into close approximations of maximally entangled eigenstates of the phase difference and the photon-number sum (Einstein-Podolsky-Rosen -- EPR -- states). Such states could be experimentally feasible with on-demand single-photon sources. We show that the teleportation fidelity can reach near unity when such ``quasi-EPR'' states are used as the quantum channel.Comment: 7 pages (two-column), 7 figures, submitted to Phys. Rev. A. Text unmodified, postscript error correcte

    Generation of entangled coherent states via cross phase modulation in a double electromagnetically induced transparency regime

    Full text link
    The generation of an entangled coherent state is one of the most important ingredients of quantum information processing using coherent states. Recently, numerous schemes to achieve this task have been proposed. In order to generate travelling-wave entangled coherent states, cross phase modulation, optimized by optical Kerr effect enhancement in a dense medium in an electromagnetically induced transparency (EIT) regime, seems to be very promising. In this scenario, we propose a fully quantized model of a double-EIT scheme recently proposed [D. Petrosyan and G. Kurizki, {\sl Phys. Rev. A} {\bf 65}, 33833 (2002)]: the quantization step is performed adopting a fully Hamiltonian approach. This allows us to write effective equations of motion for two interacting quantum fields of light that show how the dynamics of one field depends on the photon-number operator of the other. The preparation of a Schr\"odinger cat state, which is a superposition of two distinct coherent states, is briefly exposed. This is based on non-linear interaction via double-EIT of two light fields (initially prepared in coherent states) and on a detection step performed using a 50:5050:50 beam splitter and two photodetectors. In order to show the entanglement of a generated entangled coherent state, we suggest to measure the joint quadrature variance of the field. We show that the entangled coherent states satisfy the sufficient condition for entanglement based on quadrature variance measurement. We also show how robust our scheme is against a low detection efficiency of homodyne detectors.Comment: 15 pages, 9 figures; extensively revised version; added Section

    Quantum computation with mesoscopic superposition states

    Get PDF
    We present a strategy to engineer a simple cavity-QED two-bit universal quantum gate using mesoscopic distinct quantum superposition states. The dissipative effect on decoherence and amplitude damping of the quantum bits are analyzed and the critical parameters are presented.Comment: 9 pages, 5 Postscript and 1 Encapsulated Postscript figures. To be published in Phys. Rev.

    Autofeedback scheme for preservation of macroscopic coherence in microwave cavities

    Full text link
    We present a scheme for controlling the decoherence of a linear superposition of two coherent states with opposite phases in a high-Q microwave cavity, based on the injection of appropriately prepared ``probe'' and ``feedback'' Rydberg atoms, improving the one presented in [D. Vitali et al., Phys. Rev. Lett. 79, 2442 (1997)]. In the present scheme, the information transmission from the probe to the feedback atom is directly mediated by a second auxiliary cavity. The detection efficiency for the probe atom is no longer a critical parameter, and the decoherence time of the superposition state can be significantly increased using presently available technology.Comment: revtex, 15 pages, 4 eps figure

    Size-dependent decoherence of excitonic states in semiconductor microcrystallites

    Full text link
    The size-dependent decoherence of the exciton states resulting from the spontaneous emission is investigated in a semiconductor spherical microcrystallite under condition aBR0λa_{B}\ll R_{0}\leq\lambda. In general, the larger size of the microcrystallite corresponds to the shorter coherence time. If the initial state is a superposition of two different excitonic coherent states, the coherence time depends on both the overlap of two excitonic coherent states and the size of the microcrystallite. When the system with fixed size is initially in the even or odd coherent states, the larger average number of the excitons corresponds to the faster decoherence. When the average number of the excitons is given, the bigger size of the microcrystallite corresponds to the faster decoherence. The decoherence of the exciton states for the materials GaAs and CdS is numerically studied by our theoretical analysis.Comment: 4 pages, two figure

    Quantum Characterization of a Werner-like Mixture

    Full text link
    We introduce a Werner-like mixture [R. F. Werner, Phys. Rev. A {\bf 40}, 4277 (1989)] by considering two correlated but different degrees of freedom, one with discrete variables and the other with continuous variables. We evaluate the mixedness of this state, and its degree of entanglement establishing its usefulness for quantum information processing like quantum teleportation. Then, we provide its tomographic characterization. Finally, we show how such a mixture can be generated and measured in a trapped system like one electron in a Penning trap.Comment: 8 pages ReVTeX, 8 eps figure
    corecore